
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Triangle Strip Mesh Construction from Indexed

Triangle Meshes using Greedy Algorithm

I Gede Govindabhakta 13519139

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13519139@std.stei.itb.ac.id

Abstract—Any complex shape rendered using Computer

Graphics is a composition of primitive shapes such as points,

lines, quads, and most commonly triangles. Among the factors

that contribute to the performance of rendering is the amount of

data transferred from the CPU to the GPU, in the case of this

paper, the number of vertices used to represent a mesh. Triangle

strips are a method of representing a mesh reduce the number of

vertices stored to render an object. However, most formats for

saving a mesh’s data are in the form of indexed meshes. This

paper discusses a greedy algorithm approach for the generation

of triangle strip representations of indexed triangle meshes

Keywords—Computer Graphics, Triangle Strip, Mesh, Greedy

Algorithm

I. INTRODUCTION

In computer graphics, the geometry and topology of an
object is represented by a mesh, consisting of vertices
(composed of the corresponding x, y, and optionally z values).
Rendering this object requires defining faces, requiring a
varying number of vertices depending on the type of primitive
used (1 for points, 2 for lines, 3 for triangles, and 4 for quads).
Most used for both 2D and 3D rendering is the triangle
primitive because it is the simplest 2-dimensional primitive
which can also represent any other 2D primitive through
composition.

In the case of triangles, rendering a face will require 3
vertices. For a 3D object such as a cube, a total of 12 faces are
required (2 triangles for each square face of a cube). It is
apparent from this example that many of the 36 vertices
required are duplicates representing the same point. To handle
this, graphics APIs such as OpenGL provide methods of
reusing vertices by representing faces as pointers to a specified
vertex in an index buffer. This reduces the number of vertices
sent by removing the duplicates and representing faces with 3
indexes, each representing a vertex.

To further reduce the amount of data sent, we can reduce
the number of indices by rendering meshes as triangle fans and
strips. Relevant to this paper, triangle strips represent meshes
as a sequence of triangles adjacent to each other and represents
them as a sequence of vertices alternating between upright and
upside-down triangles.

Most 3D modelling software and 3D model file formats
such as OBJ store mesh data as indexed triangles, therefore this
paper will discuss a greedy approach for converting indexed
triangle meshes into ready to use triangle fan meshes.

II. THEORY

A. Triangle Meshes

Figure 1: Example of a triangulated mesh [4]

Models are typically composed of a group of points in

space called vertices which are used to compose triangles
called faces. Each vertex is a vector, normally with 3
components (x, y, and z). Each face is a group of three vertices.
In a non-indexed triangle mesh, the faces are stored as-is,
keeping the vertex data for each point in the triangle, regardless
of whether the vertex is shared with other triangles. This causes
duplicates of vertices to be a common occurrence. The total
amount of vertices needed to store n number of triangles is 3n.

Non-indexed triangle meshes are often the starting point
when learning computer graphics. They are as simple and show
the inner workings and behavior of shaders. However, they are
hard to maintain, read, and edit even for small objects with few
faces. They are quickly abandoned for the more practical (and
compact) indexed triangle meshes.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

B. Indexed Triangle Meshes

Indexed triangle meshes solve the issue of duplicate
vertices by storing the information required to build faces
separate from the vertex information. The faces contain
pointers or “indexes” to the corresponding vertex, thus
eliminating any duplicate vertex data. For example,
representing a 2-dimensional square with an indexed triangle
mesh with vertices [(1, 1), (1, 0), (0, 0), (0, 1)] will require
indices [(0, 1, 2), (0, 2, 3)].

Figure 2: Example of shared vertices in an indexed triangle
mesh [1]

The indexes normally refer to the order of the vertexes
stored sequentially. The starting point for the vertices for
graphics APIs normally starts at 0, however model file formats
may deviate from this such as OBJ that start vertex indexing
from 1.

The total amount of vertices needed to store n number of
triangles is the number of unique vertices. There is additional
data stored, the indices (which are usually unsigned integers, a
third of the size of a vertex which is represented as a 3-
dimensional vector), which is 3n in size, with n being the
number of triangles (faces).

Indexed triangle meshes are the most common used way of
representing mesh data. Most 3d file formats can be easily
interpreted into ready to use indexed triangle mesh data.
Graphics APIs also can render this data with very little
modification from rendering a non-indexed triangle mesh.

C. Triangle Fan Meshes

Triangle fan meshes are the less applicable cousin of
triangle strip meshes. Much like the name implies, they are
rendered to the shape of a fan, with all faces sharing a common
vertex. This way of representing a mesh is very compact but
not applicable (to a practical extent) to a wide variety of
meshes. The number of vertices stored is the same as indexed
triangle meshes, however the number of indices stored is
reduced to match the number of vertices stored, making it very
compact.

Figure 3: A triangle fan [1]

D. Triangle Strip Meshes

Triangle strip meshes represent meshes as a sequence of
adjacent alternating upright and upside-down triangles,
completely opposite to triangle fans which are essentially
sequences of upright triangles (relative to their neighbors, thus
the common vertex). For example, representing the same 2-
dimensional square in the indexed triangle mesh example with
a triangle strip can be done with the sequence [1, 2, 0, 3], using
2 less indices than the previous example.

Both triangle strips and fans have limitations when
representing a single mesh, therefore multiple strips or fans
may be required to represent a single object.

Figure 4: Two triangle strips in context of a larger mesh. Note
that neither strip can be extended to include the triangle marked

with an asterisk [1].

 The total amount of indices required by a triangle strip to
represent n number of triangles is 2+n. Visually, this can be
interpreted as first defining 1 line using 2 points then adding
alternating points to form the triangle sequence n times. The
alternating top-bottom pattern for the vertices must preserve
the order (clockwise or counter-clockwise) of the faces defined
which is normally used to calculate the surface normal of a face
for uses such as lighting.

 The compactness of triangle fans has diminishing returns
the longer the strip gets. Because of this, having multiple
shorter strips can be more beneficial than having long strips
with remaining artifacts of leftover triangles which were unable
to be added to the strip.

Figure 5: Diminishing returns on longer strips [1]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

 Several programs have been created before the writing of
this paper, notably the FTSG (Fast Triangle Strip Generator) by
Xinyu Xiang and collaborators [2] (1999) and Oliver Matias
Van Kaick and collaborators [3] (2004), among others. Both of
which are very efficient and effective in the generation of
triangle strip meshes.

E. Rendering Triangle Strips in OpenGL

OpenGL or Open Graphics Library is an application
programming interface (API) for rendering 2D and 3D
graphics. It is cross-platform and has bindings for many
languages, though commonly used with C++. Applications that
use OpenGL vary from video games to data visualization.
However, as a low-level graphics API, it is often abstracted by
other programs such as game engines.

Rendering a mesh in OpenGL typically involves storing the
vertex data in a vertex buffer in the CPU, then sending it to the
GPU. Using an indexed mesh, additional data is stored in an
index buffer, which is also sent to the GPU. Both buffers are
then passed into programs that run in the GPU called shaders
such as the vertex shader and fragment shader.

OpenGL works as a state machine, thus inserting values
into a buffer requires that buffer to first be selected or to “bind”
it, then passing in the values. On render time, we can determine
the number of vertices to render and the way we want to render
it. A quick (oversimplified) example of how a mesh may be
rendered in an OpenGL program is presented below.

// creating shader program and buffers,

// creating window context

...

// bind and store data to a vertex buffer

glBindBuffer(GL_ARRAY_BUFFER, 0);

glBufferData(GL_ARRAY_BUFFER, 4, vertices, STATIC_DRAW);

// bind and store data to a index buffer

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 1);

glBufferData(GL_ELEMENT_ARRAY_BUFFER, 6, indices, GL_STATIC_DRAW);

...

// render loop

while(something)

{

 // Draw 2 triangles, indices are integers, no offset

 glDrawElements(GL_TRIANGLES, 2, GL_UNSIGNED_INT, ...);

}

...

Figure 6: Simplified example of how OpenGL renders an
indexed triangle mesh

Note from the example that the mesh only has 1 index
buffer, how would it handle a mesh that cannot store all it’s
indices in a single buffer, for example in a triangle strip where
the mesh cannot be represented in a single strip? We can do
this by sending the index buffers for each strip during run time
in a for loop. This requires some modification of the render
loop show below.

...

// render loop

while(something)

{

 foreach(int[] strip: TriangleStrips)

 {

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 1);

 glBufferData(... , strip, ...);

 glDrawElements(GL_TRIANGLE_STRIP, ...);

 }

}

...

Figure 7: Simplified example of how an OpenGL program
renders an indexed triangle strip mesh

 The purpose of the usage of triangle strips is to reduce the
total amount of data sent through both the index and vertex
buffer, thus increasing performance during rendering.

F. Greedy Algorithm

A greedy algorithm is any algorithm that at each decision-
making step, selects the best option based on selection function
at the local or current scope, with hopes of reaching a global
optimum. An example would be to buy the most value out of a
purchase of multiple items by continuously choosing the
cheapest item until no money is left available.

Elements of a greedy algorithm are:

• A candidate set, consisting of possible elements of
a solution

• A solution set, consisting of elements of the
candidate set chosen for the solution

• A selection function, which decides the best
option at a given step.

• A feasibility function, which decides whether a
candidate can be selected

• An objective function, which returns a value for a
solution.

 The elements are used by a greedy algorithm as follows:

• The selection function is used to select the best
current available option

• The feasibility function is used to determine if the
selected option is feasible and adds it to the
solution if true

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

• The selected option is removed from the
candidate set

• The process is repeated until no candidates
remain or a solution is found

III. IMPLEMENTATION

The greedy algorithm implemented is a greedy by length,
based on how longer strips are more compact where
compactness is defined as the number of indices required for a
triangle strip over an indexed triangle mesh (n+2/3n, n is the
number of triangles). At each step, it tries to insert a face into a
compatible strip. If two strips or more are available, the one
with the longest length is given the new triangle.

A. Candidate Set

The candidate set for this algorithm is the set of available
triangles (faces) given. Each triangle has indices that point to a
vertex. The vertex data themselves however are not part of the
candidate set, as they are additional information relevant to the
rendering of the mesh and not the construction of the triangle
strip.

B. Solution Set

The solution set for this algorithm is the set of sequences
representing triangle strip meshes. A solution is valid if each
triangle is included in only one strip. In other words, no strips
overlap with each other.

C. Selection Function

The selection function for this algorithm adds the newest
face to an available compatible strip. If multiple strips are
compatible, the algorithm chooses the longest of the group.
The intent of this decision making is to create the lon

D. Feasibility Function

The feasibility function for this algorithm determines
whether a triangle can be added to a strip. A triangle can be
added to a strip if for every even addition to a strip (the first
triangle is counted as 0, not 1) when represented as a circular
list, there exists 2 vertices which match the last 2 vertices in the
sequence list in reverse order. For example, the triangle [2, 5,
1] can be added to the strip [4, 0, 1, 2] because in reverse order
and shifted by 1, the triangle is [1, 2, 5] which matches the
final two vertices of the strip ([1, 2]). This is implemented
because the vertex data used for this algorithm are uniform in
winding (clockwise).

E. Objective Function

The objective function of this algorithm calculates the
number of total indices used and divides them by 3n, n being
the number of faces. Lower values represent better strips (more
compact). The maximum value achievable is 0.33, which is
determined by the limit to infinity of the compactness function
for a single strip (n+2/3n)

F. Implementation

The following code is written in Javascript and describes
the large picture of the steps taken by the algorithm.

function toTriangleFan(indices)

{

 let strips = [];

 let selected;

 for(let i = 0; i < indices.length; i++)

 {

 selected = {

 face: -1,

 length: -1,

 last: -1

 };

 for(let j = 0; j < strips.length; j++)

 {

 selected = select(strips[j], indices[i], selected,
j);

 }

 if (selected.length < 0)

 {

 console.log("found new", indices[i]);

 strips.push(indices[i]);

 } else {

 console.log("added", indices[i], " to ",
selected.face);

 strips[selected.face].push(selected.last);

 }

 }

 return strips;

}

Figure 8: Main algorithm for triangle strip generation

The selection function chooses the current compared strip if
the last selected has a shorter length as follows.

// Selects the best strip to add to

function select(strip, face, selected, i)

{

 let c = compatible(strip, face);

 if (!c.status)

 {

 return selected;

 } else {

 if (strip.length > selected.length)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

 {

 return { face: i, length: strip.length, last:
c.last }

 } else {

 return selected;

 }

 }

}

Figure 9: Selection function for triangle strip generation

IV. TESTING AND ANALYSIS

Testing is done with the following sample data containing a
multidimensional array of the faces available in an unspecified
mesh. The indices are a modification of the presented mesh
presented in figure 2.

Indices

6 0 4

4 0 1

6 9 0

0 2 1

1 2 5

5 2 8

2 7 8

0 9 3

3 2 0

3 10 2

2 10 7

Table 1: Faces used for testing

 The algorithm produced the following results:

Strip Sequence

1 6, 0, 4, 1

2 6, 9, 0, 3, 2, 10, 7

3 0, 2, 1, 5

4 5, 2, 8, 7

Table 2: Triangle strips generated by the algorithm

 The algorithm produced 4 sequences representing triangle
strips with an accumulated number of indices of 19. An
indexed triangle mesh would have required 3(11) indices, to a
total of 33. Thus, the objective function returns a compactness
of 0.575758.

Figure 10: Decisions made by the algorithm during runtime

V. CONCLUSION

The usage of greedy algorithms is sufficient to generate
compact triangle strip meshes from indexed triangle meshes.
There are many faults present in the author’s implementation
of the algorithm, notably the lacking in testing using real
models which can be an aspect to improve in the future.

ACKNOWLEDGMENT (Heading 5)

The author would like to thank God for His blessings and
guidance, granting the author the strength to finish this paper.
The author would also like to thank his sister, Jo, and mother,
for giving emotional support, love, and affection throughout
the making of this paper. The author also thanks his lecturer
Prof. Ir. Dwi Hendratmo Widyantoro, M.Sc, Ph.D. as the
lecturer of both IF2211 – Strategi Algoritma, the subject giving
this paper assignment, and also IF3260 – Grafika Komputer,
the subject that gave the author inspiration and the basics of
computer graphics used throughout this paper. Finally, the
author would like to thank all the author’s colleagues for all the
support they had given.

REFERENCES

[1] Shirley, Peter and Steve Marschner, Fundamentals of Computer
Graphics, 3rd ed, 2009,

[2] Kaick, Oliver Matias van, Murillo Vicente Goncalvas da Silva, and
Helio Pedrini, “Efficient Generation of Triangle Strips from
Triangulated Meshes”, 2004,
(https://www.researchgate.net/publication/221546772_Efficient_Generat
ion_of_Triangle_Strips_from_Triangulated_Meshes), accessed on May
11th, 2021.

[3] Held, Martin, “Stripification of Polyhedral Models”, 2021,
(https://www.cosy.sbg.ac.at/~held/projects/strips/strips.html), accessed
on May 11th, 2021.

https://www.researchgate.net/publication/221546772_Efficient_Generation_of_Triangle_Strips_from_Triangulated_Meshes
https://www.researchgate.net/publication/221546772_Efficient_Generation_of_Triangle_Strips_from_Triangulated_Meshes
https://www.cosy.sbg.ac.at/~held/projects/strips/strips.html

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

[4] Ovsjanikov, Maks, “Triangle Mesh Processing”,
(http://www.lix.polytechnique.fr/~maks/Verona_MPAM/TD/TD2/),
accessed May 11th, 2021.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2021

I Gede Govindabhakta

I Gede Govindabhakta

http://www.lix.polytechnique.fr/~maks/Verona_MPAM/TD/TD2/

